
SEMESTER PROJECT

A journey around mapping class groups
and their presentations

Supervisor:
Dr. Christian Urech

Author:
Marie Abadie

DEPARTMENT OF MATHEMATICS

Spring Semester 2022



Contents

Introduction 3

1 A short walk along braid group 5
1.1 First definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The pure braid group is torsion free . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Braid groups and mapping class groups . . . . . . . . . . . . . . . . . . . . . . 10

2 Around the Lickorish-Wallace theorem 14
2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Technical lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Generating the mapping class group . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 The Lickorish-Wallace theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Presentation of the mapping class group of a surface 25
3.1 The mapping class group is finitely generated . . . . . . . . . . . . . . . . . . . 25

3.1.1 Basic definitions and background . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Sketch of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Toolbox for the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 The mapping class group is finitely presented . . . . . . . . . . . . . . . . . . . 32
3.2.1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Proof of finite presentability . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 The Complex of curves 38

References 39

2



Introduction

The present semester project intends to explore the notion of mapping class groups of surfaces
and, more specifically, to investigate presentations of the mapping class groups. However, we
regularly take some breaks to study some interesting objects or results that appear in the
landscape around mapping class groups.

In the first section, we briefly introduce the notion of braid groups. It represents how
strings can be braided. To illustrate the definition we give a proof of the fact that the pure
braid group is torsion free. Along the way, we identify the braid group on n strings as the
group of loops in the space of (unordered) n-tuples. In fact, this identification permits us
to cross the bridge, built at the beginning of the 1970’s by Joan Birman and Hugh Hilden,
between the theory of the braid group and the theory of mapping class groups. The mapping
class group of a space is the group of ways to stretch and deform the space continuously
(more precisely, it is the group of isotopy classes of homeomorphisms). By using the previous
identification, one can see the braid group as the mapping class group of a punctured disk.

Once the bridge is crossed, in the second section, we start studying the mapping class
group of a surface. It appeared in the first half of the twentieth century, particularly in the
work of Max Dehn and Jakob Nielsen. Our main quest is to explore a presentation of the
mapping class group of a surface. We follow the path traced by W. B. R. Lickorish in [Lic64]
to show that the mapping class group of a surface is generated by a nice family of classes of
homeomorphisms called the Dehn twists. Lickorish encourages us to make a detour to see a
nice theorem, which states that every compact closed 3-manifold can be obtained from the
3-sphere, by removing tori from S3 and sewing them back on differently

In the third section we focus on our principal quest. After finding a family of generators
for the mapping class group of a surface in the second section we naturally come to study the
finite presentability of the mapping class group. Our guide for this walk is [FM12]. We start
by showing that the mapping class group of a surface with no boundary and no punctures
is finitely generated by Dehn twists. Then we use a beautiful argument based on geometric
group theory to show finite presentability.

In the previous section, we meet an interesting space attached to a surface, the arc complex.
We end our walk by studying in [HPW13] the fact that the arc complex is 7-hyperbolic. This
is an interesting property of the geometry of the arc complex space saying that geodesic
triangles are thin. Moreover, the complex of curves, a close cousin to the arc complex, shares
a similar property: it is 17-hyperbolic. The motivation to study the geometry of the complex
of curves is that it helps us to understand the geometry, and hence the algebraic properties, of
the mapping class group through its isometric action on the complex of curves. See the series
of papers from Ursula Hamenstaedt to go further and the work of Masur-Minsky [MM99].

Remark

The present notes summarise the work I did for my semester project supervised by Dr. Chris-
tian Urech. The main proofs at the end of the third section and in the last section were
presented in class but are not written here (yet, maybe in a next life).
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1 A short walk along braid group

1.1 First definitions

We denote D2 the unit disk with centre zero in the plane R2, and I the interval [0, 1] in R.

Definition 1.1. A geometric braid on n strings is an embedding of n disjoint curves homeo-
morphic to the interval I, called the strings, into R2 × [0, 1],

β : {1, ..., n} × [0, 1] −→ R2 × [0, 1]

such that:

• {β(k, 0) | k ∈ {1, ..., n}} ∩ (R2 × [0, 1]) = {(1, 0, 0), ..., (n, 0, 0)} and {β(k, 1) | k ∈
{1, ..., n}} ∩ (R2 × [0, 1]) = {(1, 0, 1), ..., (n, 0, 1)}.

• Each string {β(k, t) | t ∈ [0, 1]} meets each plane R2 × {t} in exactly one point.

Definition 1.2. Two geometric braids on n strings β and β′ are isotopic if β can be contin-
uously deformed into β′. That is, there exists a continuous map F : {1, ..., n} × [0, 1]× I −→
R2×[0, 1] such that H( , , s) is a geometric braid on n strings at each time s ∈ I, F ( , , 0) = β
and F ( , , 1) = β′. Moreover the endpoints of the strings are fixed by all F ( , , s).

Definition 1.3. To each geometric braid β on n strings we associate a braid diagram on n
strands that is given by the composition of β with the projection onto R× 0× I. Each point
of the diagram lies on at most two strands and the endpoints belong to exactly one strand.

Remark 1.4. Each string in a braid on n strings connects a point (i, 0, 0) to a point (s(i), 0, 1)
where s ∈ Sn is a permutation; called the underlying permutation of the braid.

Figure 1: A geometric braid with its diagram and its permutation, the vertical arrow is I and
the horizontal arrows represent R2.

Definition 1.5. The product of two geometric braids on n strings β and β′ is a geometric
braid:

{1, ..., n} × [0, 1] −→ R2 × [0, 1]

(k, t) 7−→
{
β(k, 2t) if t ∈ [0, 12 ]
β(k, 2t− 1) t ∈ [12 , 1]
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Figure 2: Product of two braids

See Figure 2.

Definition 1.6. The group of geometric braids on n strings, denoted Bn, is the set of isotopy
classes of geometric braids on n string with the product defined above. See [Chr08].

Remark 1.7. During a presentation in class, we showed that The Braid group on n strings
(1.6) is isomorphic to the group with the following presentation:〈

σ1, ..., σn

∣∣∣∣ σiσj = σjσi ∀i, j = 1, ...n, |i− j| > 2
σiσi+1σi = σi+1σiσi+1 ∀i, j = 1, ...n− 2

〉
Definition 1.8. The kernel of the surjective morphism

π : Bn −→ Sn

which associates to a braid its underlying permutation is called the Pure braid group

1.2 The pure braid group is torsion free

We start with a few words about configuration spaces and braid groups. Let M be a topo-
logical space.

Definition 1.9. The configuration space of n points in M is the set of n-tuples of pairwise
distinct points in M :

Confn(M) := {(u1, . . . , un) ∈Mn|ui ̸= uj∀i ̸= j}.

Consider the case where M = R2. Then, we identify the fundamental group of its config-
uration space of n points with the group of pure braid with n strings, that is:

π1(Confn(R2)) ∼= PBn.

To see this, consider a loop γ : I −→ Confn(R2), γ(t) := (α1(t), . . . , αn(t)) ∈ (R2)n which
starts and ends at the point en = ((1, 0), . . . , (n, 0)). By following the movement of each point
along the path γ, we obtain β ⊂ R2 × I a well-defined pure braid with n strings:

β(k, t) = (αk(t), t).
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Conversely, given a pure geometric braid with n strings one can build a loop γ in the config-
uration space of n points of R2 where each coordinate γi of the loop is given by the curve of
the ith string. This loop is based at en since we started with a pure braid. It is well defined
in the configuration space since all the curves of the geometric braid are disjoint. The isotopy
class of β does not depend on choice of γ. A homotopy H : Confn(R2) × I −→ Confn(R2),
from γ = H( , 0) to another loop, corresponds to an isotopy: F : {1, ..., n} × [0, 1] × I −→
R2 × [0, 1] (k, t, s) 7−→ (Hk(t, s), t)

One can show that if one forgets the order of the points in the n−tuple, i.e. if one mods
out the symmetric group, we obtain a group isomorphism:

π1

(
Confn(R2)

Sn

)
∼= Bn.

Using this new definition of braid groups via the notion of configuration spaces, we will
prove the following property of braid groups:

Proposition 1.10. The group of pure braids is torsion free.

The proof uses the fact that the configuration space is an Eilenberg–MacLane space of
rank one and is finite dimensional.

First, we begin with a lemma.

Lemma 1.11. Let G be a group such that the associated Eilenberg–MacLane space X of type
K(G, 1) is finite dimensional. Then G is torsion free.

Proof. By contradiction, we assume that G is not torsion free. Hence G has a non-trivial finite
cyclic subgroup, isomorphic to Z/mZ for some integer m. By the Galois correspondence,
this subgroup corresponds to an m-fold covering X̃ −→ X. The covering map induces an
isomorphism on the homotopy groups of degree ≥ 2. Consequently, X̃ is a K(Z/mZ, 1).
Hence, it is weakly homotopy equivalent to an infinite lens space. We obtain a contradiction:
homology groups of X̃ vanish above its dimension whereas the lens space has non trivial
homology in infinitely many degrees.

Now we prove the proposition.

Proof of Proposition 1.10. Define the map

ρ : Confn+1(R2) −→ Confn(R2)

(z1, . . . , zn+1) 7−→ (z1, . . . , zn).

on the fundamental groups, it induces the map ρ : PBn+1 −→ PBn that forgets the (n+1)th
string of a pure geometric braid. Now, we study the fiber of ρ. Take a point (z1, . . . , zn) in
Confn(R2), then observe:

ρ−1((z1, . . . , zn)) = {(z1, . . . , zn, yn+1) ∈ Confn(R2)}
∼= C− {z1, . . . , zn} =: Cn.

We claim that the map ρ is a fibration. To prove this, we show that (Confn+1(R2) is a fiber
bundle over Confn(R2) with fiber Cn. Take a point x̃ = (x1, . . . , xn) ∈ Confn(R2). Then
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the xi’s are all distinct so one can choose pairwise distinct neighbourhoods U1, . . . , Un in R2.
Then, Ũ = U1×· · ·×Un is a neighbourhood of x̃ in Confn(R2). We show that it is a trivializing
neighbourhood, i.e. the map ρ is a trivial fibre bundle over Ũ . Observe that

Ṽ := ρ−1(Ũ) = {y = (y1, . . . , yn, yn+1) ∈ Confn+1(R2) | yi ∈ Ui ∀i = 1, . . . , n}.

Now we need to find a map ϕ : Ṽ −→ Ũ × Cn such that the following diagram commutes

Ṽ Ũ × Cn

Ũ

ρ

ϕ

proj2

where proj2 : Ũ −→ Ũ × Cn is the natural projection. Take a point a ∈ Ui, let ϕi(a, ) be
a homeomorphism on Ūi

∼= Dn fixing the boundary and sending a to xi. This extends to a
homeomorphism on all R2 that is the identity outside Ui. For each i, we get a continuous
family of homeomorphisms parametrized by Ui. In total, we have

{ϕi : Ui × R2 −→ R2}i=1,...,n.

Finally, ϕ is defined as follows:

ϕ : Ṽ = ρ−1(Ũ) −→ Ũ × Cn

y = (y1, . . . , yn, yn+1) 7−→ (y1, . . . , yn, ϕ1(y1, ) ◦ · · · ◦ ϕn(yn, )(yn+1)).

This is well defined. Indeed, for y ∈ Confn+1(R2), the point yn+1 is distinct from all the yi’s,
i ≤ n. Moreover, ϕi(yi, ) is the identity outside of Ui. Thus, if yn+1 is in one of the Ui’s,
say Uj , then ϕi(yi, ) fixes yn+1 for each i ̸= j and only ϕj(yj , ) moves it, sending it to a
point in Uj but distinct from xj . This shows that ϕ(y) is indeed in Ũ × Cn. The map ϕ is a
homeomorphism, with inverse given by

(y1, . . . , yn, yn+1) 7→ (y1, . . . , yn, ϕ1(y1, )−1 ◦ · · · ◦ ϕn(yn, )−1(yn+1)).

This concludes the proof that ρ is a fiber bundle.
Since the map ρ is a fibration, it induces a long exact sequence on homotopy groups:

· · · −→ πk(Cn) −→ πk(Confn+1(R2)) −→ πk(Confn(R2)) −→ πk−1(Cn) . . .

Note that πk(Cn) = 1 for all k ̸= 1. From the previous sequence one deduces that:

πk(Confn+1(R2)) ∼= πk(Confn(R2)) for all k > 1.

Now, for n = 1 one has πk(Conf1(R2)) = πk(R2) = 1, thus

πk(Confn(R2)) = 1 for all n ≥ 1, k > 1.

Hence Confn(R2) is an Eilenberg–MacLane space of type K(PBn, 1). We conclude by using
Lemma 1.11.

Corollary 1.12. The braid group is torsion free.
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βn

βn−1

β3

β2

1 2 3 n−1 n. . .

. . .

Figure 3: Combed form of a pure braid.

Proof. We observe that Confn(R2) is an n!-fold covering of Confn(R2)
Sn

. The covering map
induces an isomorphism on the homotopy groups with rank ≥ 2. Hence we deduce that
Confn(R2)

Sn
is a K(Bn, 1) and the result follows.

From the previous proof we see another nice result about pure braid groups. Indeed each
geometric pure braid can be written in a combed form as shown on figure 1.2.

More formally, we have:

Proposition 1.13. Every geometric pure braid with n strings can be written as:

β = β2β3 . . . βn, where βj ∈ PBj ⊆ PBn.

This decomposition is called the combed form of β.

Proof. This can be shown by looking at the first terms of the long exact sequence on homotopy
groups given in the proof the Proposition 1.10:

. . . 1 = π2(Confn(R2))

π1(Cn) π1(Confn+1(R2)) π1(Confn(R2))

π0(Cn) = 1 π0(Confn+1(R2)) π0(Confn(R2)) 0

9



Note that the configuration spaces and Cn are connected. We already identified the first two
fundamental groups as the pure braid groups with n + 1 and n strings. The fundamental
group of the n times punctured complex plane is the free group on n generators, denoted by
Fn. Observe that π2(Conf1(R2)) = π2(R2) = 1. Taking n = 1 in the previous sequence we
obtain that π2(Conf2(R2)) = 1. Hence, by induction, π2(Confn(R2)) = 1 for all n ≥ 2 (or
simply use the fact that it is an Eilenberg-MacLane space). Thus we have the following short
exact sequence:

1 −→ Fn −→ PBn+1
ρ−→ PBn −→ 1

Then, let s : PBn −→ PBn+1(R2) be the map that adds a vertical (n + 1)−th string. This
defines a section of ρ, hence the previous short exact sequence splits and one has:

PBn+1
∼= Fn⋊PBn.

We conclude by induction.

1.3 Braid groups and mapping class groups

Here we introduce the notion of mapping class groups and we explain how we can interpret
the braid group as the mapping class group of a particular space.

Let M be an oriented topological manifold (possibly with boundary ∂M). Let Q be a
finite subset in the interior of M .

Definition 1.14. A self-homeomorphism of (M,Q), is an orientation preserving homeomor-
phism from M to itself that fixes the boundary of M pointwise and Q setwise. The set of
self-homeomorphisms of (M,Q) is denoted by SelfHom(M,Q).

Remark 1.15. A self-homeomorphism of (M,Q) induces a permutation on Q.

Definition 1.16. Two self-homeomorphisms f and g are isotopic if there exists a family
(Ht)t∈[0,1] of self-homeomorphsims of (M,Q) such that H0 = f and H1 = g and the map

M × [0, 1] −→M, (x, t) 7−→ Ht(x)

is continuous. it is straightforward that, being isotopic defines an equivalence relation.

Definition 1.17. The mapping class group of (M,Q), denoted Mod(M,Q), is the group of
isotopy classes of self-homeomorphisms of (M,Q). We write Mod(M) := Mod(M, ∅).

Example 1.18. An important example is the mapping class group of the closed unit ball of
dimension n ≥ 0:

Mod(Dn) is trivial.

This follows from the Alexander trick, which states that the self-homeomorphisms of Dn are
all isotopic to the identity. Indeed, let f be element of Mod(Dn). Then one defines:

Ht(z) =

{
z if t ≤ |z| ≤ 1
tf( zt ) if |z| < 1

which is an isotopy fromH0 = id toH1 = f . See Figure 4 for an illustration of the isotopy. △
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Figure 4

Definition 1.19. Let α be a subset of M homeomorphic to [0, 1], with interior disjoint from
Q ∪ ∂M and such that the end points lie on Q. The half-twist, τα : (M,Q) −→ (M,Q) is
the homeomorphism obtained at the end of the isotopy that starts with the identity map
id : M −→ M and rotate with an angle π, the segment α in M around its midpoint in the
direction provided by the orientation of M .

Remark 1.20. Note that τα(α) = α and τα is the identity outside a neighbourhood of α.
Moreover, τα(Q) = Q and τα induces a permutation on Q that permutes the end points of α.

Example 1.21. Consider α = [−12 ,
1
2 ] in C and U the unit disk. The following homeomor-

phism:

τα : C −→ C

z 7−→


z if z /∈ U
−z if |z| ≤ 1

2

ze−2πi|z| if 1
2 ≤ |z| < 1.

.

is a half-twist. Figure 5 illustrates the action of τα on a curve that intersects α transversely

Figure 5

at one point. One can also imagine that the neighbourhood of α is a viscous fluid and when
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Figure 6

we rotate α we also drag this fluid. See Figure 6. △

Proposition 1.22. Let D2 be the closed 2-disk and let Qn = {x1, .., xn} be a collection of n
distinct points in D2. The braid group Bn is isomorphic to Mod(D2, {x1, .., xn}).

Proof. Consider the following sequence of maps:

SelfHom(D2, Qn) −→ SelfHom(D2) −→ Confn(D2)

Sn

where the first map is just the inclusion and the second map is given by:

evalQ : SelfHom(D2) −→ Confn(D2)

Sn

f 7−→ {f(x1), ..., f(xn)}.

Since the evaluation map is a fibration we can look at the first terms of the long exact sequence
on homotopy groups associated to this fibration. Note that SelfHom(D2) is connected and
is also contractible by the Alexander trick. By definition one has π0(SelfHom(D2, Qn)) =

Mod(D2, Qn). Recall that π1

(
Confn(R2)

Sn

)
∼= Bn. Hence, one has:

π1(SelfHom(D2) = 1 −→ Bn
∼=−→ Mod(D2, Qn) −→ π0(SelfHom(D2)) = 1 −→ 1.

Remark 1.23. The isomorphism is given by the connecting map (between the π1 and the π0

so it corresponds to the monodromy action). Take an element in π1

(
Confn(R2)

Sn

)
represented

by a loop β that can be viewed as a braid starting and ending at the same point in D2. See

Figure 7
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for instance Figure 7. Then, following the movement, during the loop, of each segment in
D2 between the endpoints of β we obtain at the end an element of Mod(D2, Qn) (a half-twist
in Figure 7). This is the element β in the following diagram given by the homotopy lifting
property.

SelfHom(D2, Qn)

SelfHom(D2)

I Confn(D2)
Sn

evalQ

β

β

13



2 Around the Lickorish-Wallace theorem

The goal of this discussion is to present a proof of the Dehn-Lickorish theorem which states
that the mapping class group of a connected closed orientable surface is generated by Dehn
twists. Furthermore, we apply this theorem in the Lickorish proof of the Lickorish-Wallace
Theorem [Lic62]. In the 1960’s, this theorem was proven using different methods by a Scottish-
American mathematician, Andrew Wallace, and a British mathematician, W.B.R. Lickorish.
This theorem states that every compact closed 3-manifold can be obtained from the 3-sphere,
by removing tori from S3, then sew the tori back differently. Along the way we will introduce
some basic notions relevant to the theorem and its proof (Dehn twists, handlebodies, Heegaard
decompositions of 3-manifolds, etc). Here we follow closely [Lic62].

2.1 Basic concepts

Lickorish worked on combinatorial manifolds. Here we will consider the particular case of
surfaces. A topological surface is a topological space such that every point has a neighbour-
hood that is homeomorphic to an open subset of a Euclidean plane. It can be shown that
it is a combinatorial 2-manifold. Basic definitions such as simplicial complex, subdivisions,
homeomorphisms, combinatorial manifold, can be found in [Bry01]. Here we recall the main
definitions.

Definition 2.1. Let X be a topological space and f, g : X −→ X be two homeomorphisms.
If there exists a homotopy H : X × I −→ X between f and g, which is a homeomorphism at
each time t ∈ I, then one says that f and g are isotopic.

Definition 2.2. Let S be a surface, the mapping class group of S is the group of isotopy
classes of orientation preserving homeomorphisms. We denote it Mod(S). It is the quotient
of the set of orientation preserving homeomorphisms by the subset of elements isotopic to the
identity.

Definition 2.3. Let S be a surface, a curve γ in S is a continuous function γ : [0, 1] −→ S.
A curve is closed if γ(0) = γ(1). A curve is simple if it has no self-intersections.

Definition 2.4. Take two simple closed curves α and β. The geometric intersection number
of α and β is defined by:

i(α, β) := min{|α′ ∩ β′|α′ ∈ [α], β′ ∈ [β]}

where [·] indicates the isotopy class.

Definition 2.5. Let S be surface and C be a simple closed curve in S. Take a tubular
neighbourhood of C in S, i.e. a cylinder S1× I. Performing a C-homeomorphism on S consists
in cutting S along C, twisting one of the ends of the neighbourhood and then gluing together
the two ends. Figure 8 illustrates this process. A C-homeomorphism is also called a Dehn
twist.

Definition 2.6. Let α and β be two curves in a surface S such that they can be obtained
from each other via a sequence of C-homeomorphisms and a homeomorphism isotopic to the
identity. Then we write α ∼c β. Note that ∼c is an equivalence relation.

14



Figure 8: A Dehn Twist.

Definition 2.7. Let M be an n-manifold. Attaching an r-handle to M consists in gluing to
M a copy of Dr × Dn−r along an embedding of Sr−1 × Dn−r into the boundary ∂M of M . A
handlebody is a 3-ball with 1-handles attached to it.

Definition 2.8. A Heegard splitting of a closed connected orientable 3-manifold M , is given
by two handlebodies H1 and H2,with same genus, such that

M = H1 ∪f H2,

where f is a homeomorphism from ∂H1 to ∂H2.

Theorem 2.9. Any closed connected orientable 3-manifold has a Heegard splitting.

Proof. See Lemma 12.12 in [Lic97].

Proposition 2.10. Let M be closed connected orientable 3-manifold, with Heegard splitting
M = H1 ∪f H2. Then, there exists a homeomorphism h : ∂H1 −→ ∂H2 such that S3 ∼=
H1 ∪h H2.

Figure 9
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Proof. First, ∂H1 and ∂H2 are surfaces, say genus g. Let α1, ..., αg be a collection of closed
meridian curves in ∂H1. Let β1, ..., βg be a collection of closed longitudinal curves in ∂H2

(see Figure 9). One can take a homeomorphism h : ∂H1 −→ ∂H2 such that h(αi) = βi
∀i = 1, ..., g. Indeed, for g = 1 it is clear, for other g, write H1 and H2 as a connected sum of
g tori, #iTαi and #iTβi

. Choose h that maps the excluded disk in the connected sum of Tαi

to the the excluded disk in the connected sum of Tβi
. Then, one has H1 ∪h H2 = S3.

2.2 Technical lemmata

In this section we will study some technical lemmata showing that for any connected orientable
closed surface the mapping class group is generated by Dehn twists. Finally, by using the
previous fact we will prove the Wallace-Lickorish theorem.
Let S be an orientable surface.

Lemma 2.11. Let α and β be simple closed curves in S such that i(α, β) = 1. Then, α ∼c β.

Figure 10

Proof. Consider Figure 10. We apply a β-homeomorphism and then a C-homeomorphism
where C is the blue curve (isotopic to α). In this way, we have transformed α into a path
isotopic to β.

Corollary 2.12. Let γ1, ..., γm be simple closed curves in S such that, for each i = 1, ...,m−1,
i(γi, γi+1) = 1. Then γ1 ∼c γm.

Lemma 2.13. Let α and β be simple closed curves in S. Then, there exists a curve α∗ ∼c α
in S such that, for some tubular neighbourhood V of β, α∗∩(S−V ) ⊂ α∩(S−V ) and exactly
one of the following statements is true:

1. α∗ does not meet β, i.e. i(α∗, β) = 0

2. α∗ meets β at exactly two points, i.e. i(α∗, β) = 2, i.e. with zero algebraic intersection
(with different directions with respect to a certain orientation).

Proof. We proceed by induction on n = i(α, β). If n = 0 then one takes α∗ = α so that (1)
is true. If n = 1, by Lemma 2.11 α ∼c β so one can slightly push β to see that β is isotopic
to a curve α∗ disjoint from α and (1) holds. Then, if n = 2 and if there is zero algebraic
intersection, one takes α∗ = α so that (2) is true. Now, assume that α and β intersects exactly
n times and that the lemma holds for simple closed curves that intersect k < n times. After
orienting α and β we distinguish two cases. See Figure 11.
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Figure 11

(A) There are two consecutive intersection points x, y ∈ α ∩ β such that at these points α
is oriented with the same direction with respect to the orientation of β.

(B) There are three consecutive intersection points x, y z ∈ α ∩ β such that at these points
α is oriented with alternating direction with respect to the orientation of β.

First we study case (A).

Let γ be a curve staying inside a tubular neighbourhood of α outside the diagram and
such that it meets α and β each at exactly one point near x and y. See Figure 12. Hence, γ

Figure 12

intersects α exactly once so by Lemma 2.11 α ∼c γ. Now, γ and β meet less than n times,
thus we conclude by applying the induction hypothesis.

Finally, we study case (B). Consider Figure 13. Let C be a curve that intersects α twice,

Figure 13

and β once near the three points x, y and z. We take C such that it stays inside a tubular
neighbourhood of α outside the diagram. Apply a Dehn twist along C. Then, α is equivalent
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under (∼c) to a curve that intersects β only n− 2 times. We conclude by using the induction
hypothesis.

Corollary 2.14. Let α, β1, ..., βm be simple closed curves in S such that the βi are pairwise
disjoint. Then, there exists a curve α∗ such that one of the statements from Lemma 2.13 is
satisfied for α∗ and each βi for all i = 1, ..., n.

Proof. Apply successively Lemma 2.13.

Now, let S be a closed connected orientable surface. By the classification theorem of
surfaces, S is a connected sum of g tori, i.e. a sphere with handles1. Consider the situation

Figure 14

presented in Figure 14. Here we have a closed orientable surface of genus 4 with disjoint
simple closed curves δi, ϵi in each handle.

Lemma 2.15. Let S be a closed connected orientable surface of genus g with the collection
of simple closed curves as shown in Figure 14. Let α be a simple closed curve in S. Then,
there exists a curve α∗ such that α ∼c α∗ and α∗ ∩ ϵi = ∅ for all i = 1, ..., g.

Proof. First, we apply Corollary 2.14 to α, ϵ1, ..., ϵg. Hence, we get a curve α∗ such that
α ∼c α∗ and α∗ either (1) or (2) holds. Then, we apply again Corollary 2.14 to α∗, δ1, ..., δg.
Thus, there exists a curve α∗ such that (1) or (2) are satisfied for all δi and ϵi.

Then, we work separately on each handle Si of S so that α∗ avoids ϵi. If (1) is satisfied
we are done.

Otherwise we are in situation (2), i.e. α∗ meets ϵi exactly twice with zero algebraic inter-
section. Now, if α∗ satisfies (1) for δi, we are in the following situation.

1note that here a handle a torus in the connected sum and not an r-handle
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Figure 15

Figure 16

Figure 17
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In Figure 15 we see Si as a rectangle with δi as boundary and with identified holes that
represents ϵi.

Finally, if α∗ satisfies (2) for δi we are in the following situation. In Figure 17 the curve
attached to the left circle is pushed isotopically to lie in ϵi. Then, via an isotopy one can
push it away from ϵi and away from Si. Note that during the process we left everything fixed
outside the handle we are working on.

By repeating the process on each handle of S we obtain a curve isotopic to α∗ that avoids
the ϵi.

2.3 Generating the mapping class group

Let S be a closed, connected, orientable surface with genus g. Let α and β be two curves
in S, we write a ≡ b if there is an orientation preserving homeomorphism j isotopic to the
identity such that jα = β.

Lemma 2.16. Let f be an element of the mapping class group of S. Let ϵ1, ...ϵg be curves
as shown in Figure 14. Then, there is a product T of Dehn twists such that Tfϵi ≡ ϵi for all
i = 1, ...g.

Proof. We proceed by induction. Take 0 ≤ t ≤ g we show that the following statement P (t)
is true.

P (t) : there is a product T of Dehn twists such that Tfϵi ≡ ϵi for all i, 0 ≤ i ≤ t ≤ g.

The initial step t = 0 is true by the Alexander trick (ϵ0 is the trivial loop). Then, assume
that Tfϵi ≡ ϵi for all i, 0 ≤ i ≤ t ≤ g. We show that there exists a product of Dehn twist T ′

such that T ′fϵi = ϵi for all 0 ≤ i ≤ t+ 1 ≤ g.
By Lemma 2.15, Tfϵt+1 ∼c α∗, where α∗ does not intersects any of the ϵi in S. Hence

there exists T ′ a product of Dehn twists such that

T ′Tfϵt+1 ≡ α∗ and T ′Tfϵi ≡ ϵi ∀i ≤ t.

The last fact holds because to find T ′ in the proof of 2.15 we worked on the handle associated
to ϵt+1 and during the process we left everything fixed outside the handle we are working on.
Since α∗ does not intersects any of the ϵi in S, it is on the sphere part,i.e. it lives outside the
handles. Moreover, observe that ϵt+1 is not homologically trivial so neither is α∗. Hence, α∗
divides the sphere into two components which must be connected by one handle at least. See
Figure 18. Now, ϵt+1 is not homologically equivalent to the ϵi (or a combination of them) so
neither is α∗. Recall that α∗ lives on the sphere part and is not homologically trivial. Thus, α∗
goes through a handle that does not contain any of the ϵi for i ≤ t. The situation is illustrated
in Figure 18. Applying Lemma 2.11 successively, we obtain that α∗ ∼c l ∼c m ∼c ϵt+1. Thus,
there exists T ′′ (chosen such that they fix S outside the handle) such that T ′′α∗ = ϵt+1. Hence
by taking T := T ′′T ′T we have the result.

Lemma 2.17. Let Dg be a disk from which g disks have been removed. Let f be a homeo-
morphism on Dg which is the identity on the boundary of Dg. Then, there is a product T of
Dehn twists such that jTf is the identity map on Dg, where j is an element isotopic to the
identity and leaving Dg fixed on its boundary.
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Figure 18

Proof. We show following statement by induction on the number of disks removed:

P (u) : Let Du a disk from which u disks have been removed. Let f be a piecewise linear
homeomorphism on Du which is the identity on the boundary of Du. Then, there is a
product T of Dehn twists such that Tf is the identity map on Du modulo an element

isotopic to the identity and leaving Du fixed on its boundary.

The case u = 0 is given by the Alexander trick. For the induction step, assume we have
removed u + 1 disks from Du. Consider f a homeomorphism on Du which is the identity
on the boundary. Consider the following situation. Let α be a curve starting and ending
at two distinct components of the boundary. Let A and B be the end points of α. Denote
A2, ..., An−1 the intersection points of α with fα along α. Since f is the identity on the
boundary of Du, one can assume that f is the identity on α near the ending points. Say f is
the identity from A to A1 and from An to B. After orienting α, one distinguishes two cases
depending on the orientation of fα.

1. The first case is when fα is oriented in the same direction at A1 and A2 with respect
to the direction of α. See Figure 19. Choose a strategic curve C which behaves like

Figure 19
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fα between A and A1 and like α between A1 and A2. Let TC be the Dehn twist along
C and consider TCfα. Modulo an element isotopic to the identity, TCf is the identity
on the segment of α between A and A2. Then, TCfα intersects α fewer times than fα
does.

2. The second case is when fα is oriented in different direction at A1 and A2 with respect
to the direction of α.

Figure 20

See Figure 20. Again choose a strategic curve C as show in the figure. By applying a
Dehn twist along C we come back the the first case.

By repeating the process, we find a product of Dehn twists T such that, modulo an element
isotopic to the identity, Tf is the identity on the boundary of Du and on α. Then, we cut Du

along α and we can apply the induction hypothesis on it to obtain the result.

Remark 2.18. In the statement of the lemma, j and T are inversible so this is equivalent to
say that f is a product of Dehn twists.

Theorem 2.19. (Dehn-Lickorish Theorem) Let S be a connected closed orientable surface
and f an element of the mapping class group of S. Then, f is isotopic to a product of Dehn
twists. In other words, the mapping class group of S is generated by Dehn twists.

Proof. Let S be a closed connected orientable surface of genus g with the collection of simple
closed curves as shown in Figure 14. By Lemma 2.16, there is a product T of Dehn twists
such that Tfϵi ≡ ϵi for all i = 1, ...g. Moreover, there is an a homeomorphism isotopic to the
identity j such that jTfϵi = ϵi for all i = 1, ...g. Let Sϵ be the surface S cutting along each
ϵi’s. Apply Lemma 2.17 to jTf and Sϵ. Thus, jTf is a composition of Dehn twists on Sϵ and
since it restricts to the identity on the boundary, this is still true when we identify the ϵi as
well. This gives the result.

The Lickorish-Wallace theorem is obtained as an application of Therorem 2.19.
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2.4 The Lickorish-Wallace theorem

Theorem 2.20. Let M be a connected, closed, orientable, combinatorial 3-manifold. Then,
M can be obtained by removing a finite number of disjoint solid tori from S3 and gluing them
back in a different way via homeomorphisms.

Proof. We consider the Heegard splitting of M into two handlebodies H1 and H2:

M = H1 ∪f H2

where f is a homeomorphism between the boundaries of H1 and H2. We have seen (Propo-
sition 2.10) that there exists a homeomorphism i between the boundaries of H1 and H2 such
that:

S3 ∼= H1 ∪h H2.

To begin, we explain how to to perform a C-homeomorphism on ∂H1. Embed (S1∨ I)×S1
in H1 such that 0×S1 follows the path C lying in ∂H1 and (S1∨ (0, 1])×S1 lies in the interior
of H1 with 1 as gluing point in S1 ∨ I.

Figure 21

Figure 22
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The situation is depicted in Figure 21. Then, cut H1 along (S1 ∨ I) × S1, twist through
2π along C and glue again along I×S1. Hence, we have executed a C-homeomorphism on
H1−{a solid torus}. See Figure 22. To perform a product of C-homeomorphisms, we embed
several (S1∨ I)×S1 in H1 distant from each other so that the associated tori that are removed
are all disjoint. Then, we proceed as described above.

Now, we show that there exists a finite collection of solid tori inM and S3 such that, after
removing the collection associated to each space, the resulting spaces are homeomorphic.
Since the boundary of a 3-manifold is a 2-manifold, we can apply Theorem 2.19 to f−1h :
∂H1 −→ ∂H1:

f−1h = jT or equivalently h = fjT

where T is a product of Dehn twists and j is a homeomorphism isotopic to the identity.

Then, T−1j−1 corresponds to a product of Dehn twists on ∂H1. We use the previous con-
struction, to perform the Dehn twist corresponding to T−1j−1, which modified H1 into
H ′1 := H1 − {solid tori}. Gluing H2 to H ′1, we obtain:

M − {solid tori} = H ′1 ∪f H2.

Note that in this construction, a point in the boundary of H ′1 is identified with: x ∼ fjT︸︷︷︸
=h

(x)

∂H1 ∂H2 ⊂ H2

∂H1

H ′1
H′

1∪H2

T−1J−1∼f

T−1j−1

f

Thus we obtain the identification:

M − {solid tori} = H ′1 ∪f H2
∼= S3 − {solid tori}.

Then we sew back the disjoint tori that were removed during the process.
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3 Presentation of the mapping class group of a surface

3.1 The mapping class group is finitely generated

In 1964, Lickorish proposed a proof of the fact that the mapping class group of a surface of
genus g is finitely generated by Dehn twists along 3g−1 non-separating curves [Lic64]. Then,
in 1967, he modified his article to give a correct proof.

Figure 23

In his paper Lickorish showed that the curves shown in Figure 23 suffice. He slightly
modified Lemma 2.13 to improve the main theorem. Here is the statement of the modified
lemma:

Lemma (Modified lemma). Let α and β be simple closed curves in S. Then, there exists a
curve α∗ ∼c α in S such that, for some tubular neighbourhood V of β, α∗∩(S−V ) ⊂ α∩(S−V )
exactly one of the following statement is true:

1. α∗ does not meet β, i.e. i(α∗, β) = 0

2. α∗ meets β at exactly two points, i.e. i(α∗, β) = 2, with zero algebraic intersection (with
different directions with respect to a certain orientation).

Moreover, the twists required in the equivalence α∗ ∼c α can be taken to be along
curves c, such that c ∩ β has fewer points than α ∩ β, and c ⊂ α ∪ V .

Figure 24

In 1979, Humphries [Hum79] proved that the 2g+1 curves in Figure 24 suffice to generate
the mapping class group.

Here, our goal is to give the main idea to prove and to motivate the theorem:

Theorem 3.1. For g ≥ 0, the mapping class group of a surface of genus g is generated by
finitely many Dehn twists along non-separating simple closed curves.
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3.1.1 Basic definitions and background

First, we begin by some definitions and notations. We denote by Sg,n := Sg − {x0, ..., xn} or
S, the surface with empty boundary of genus g with n punctures. Observe that punctures
are obtained by removing a closed disk from the surface whereas boundary components are
obtained by removing an open disk from the surface. Since we study the mapping class group,
sometimes it will be more convenient to think of punctures as marked points because one has

Mod(S − {x0, ...xn}) = Mod(S, {x0}, ...{xn})

where the elements of Mod(S, x) are the elements from Mod(S) that stabilize the set of
punctures.

Given a simple closed curve in a surface S, the surface obtained by cutting S along α is

Sα := S −N(α)

where N(α) ∼= S1 × [−1, 1] with core curve S1 × {0} = α. Hence Sα has two boundary
components more than S. A closed curve α is non-separating if the cut surface Sα is connected.
The curve is essential if it is not homotopic to a point or a boundary component or a puncture.

Finally, one defines the pure mapping class group of S, PMod(S) as the subgroup of
elements from Mod(S) that fix the punctures pointwise.

Example 3.2. The mapping class group of the disk, Mod(D2) and the punctured disk
Mod(D2 − x0) by the Alexander trick are trivial. △

Example 3.3. Clearly Mod(S0,1) is trivial. One can modify any homeomorphism of S0,0 via
isotopy so that it fixes a point Mod(S0,0) is also trivial. Then, we consider the case of S0,3.
We have an isomorphism,

Mod(S0,3) −→ Σ3

where Σ3 is the permutation group on three generators. The surjectivity follows from the fact
that transpositions corresponds to half twists (see part on braid group). Take a map ϕ that
fixes the three marked points x, y and z. To show the injectivity, we need to show that ϕ
is isotopic to the identity. Take an arc γ with endpoints x and y, then ϕ(γ) has the same
endpoints and we can assume that γ and ϕ(γ) have disjoint interior. Cut along γ ∪ ϕ(γ) to
obtain two disks both with γ and ϕ(γ) on the boundary and one with the marked point z in
its interior.

Figure 25
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See Figure 25. Since γ and ϕ(γ) bound a disk in S0,3 they are isotopic by Example 3.2 and
ϕ is isotopic to an element from the mapping class group ϕ′ that fixes γ pointwise. Again,
consider S0,3 and cut along γ to obtain a disk with one marked point. Then, ϕ′ induces a
homeomorphism on this disk which is the identity on the boundary. By Example 3.2 ϕ′ is
isotopic to the identity and thus so is ϕ.

With a similar reasoning one can show that Mod(S0,2) is isomorphic to Z/2Z. △

Example 3.4. Finally, we consider the torus S1,0 denoted by T 2. We study the following
map:

σ : Mod(T 2) −→ Aut(H1(T
2,Z)) ∼= Aut(Z2) ∼= GL(2,Z)

f : T 2 −→ T 2 7−→ f∗ : H1(T
2,Z) −→ H1(T

2,Z)

Let f ∈ Mod(T 2) then, σ(f) ∈ SL(2,Z) because f is invertible and orientation preserving.
The surjectivity follows from the fact that SL(2,Z) acts on R2 while preserving Z2. For the
injectivity, take an element ϕ in the kernel and α, β two generators of π1(T

2). Then ϕ ◦ α is
homotopic to α. Then ϕ is isotopic to ψ and ψ|α = id. Cut T 2 along α to get the annulus.
Again, ϕ ◦ β is homotopic to α. Then ψ ◦ β is homotopic to β thus ψ is isotopic to χ and
χ|α∪β = id. Cut along β to obtain a disk then by Example 3.2, χ is isotopic to the identity
and so is ϕ. Here we used part 1.2.5 in [FM12] which says that two essential simple closed
curves in a surface are isotopic if and only if they are homotopic. △

Take a surface S with a marked point x. Consider the forgetting map:

F : Mod(S, x) −→ Mod(S)

which forgets the marked point x. We wonder what is the kernel of F . Take f ∈ ker(F),
by definition F(f) = id ,i.e., there exists an isotopy between F(f) and id. Following the
forgetting point during this isotopy we trace a loop in S based at x. Now consider the push
map:

P : π1(S, x) −→ Mod(S, x)

γ 7−→ [ϕγ ]

where [ϕγ ] is the map obtained at the end of the isotopy which extends γ viewed as an isotopy
of point to the whole surface. Equivalently, one can also define P([γ]) = T←−γ T

−1
−→γ , where ←−γ

and −→γ are two loops obtained by moving γ slightly to the right and to the left respectively.

Figure 26
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Figure 26 describes the push map. The Birman short exact sequence was given in 1968
by Joan Birman in her thesis [Bir68]. It is given by:

π1(S, x)
P−→ Mod(S, x)

F−→ Mod(S) −→ 1.

One can also rephrase with PMod(S),

π1(S, x) −→ PMod(S, x) −→ PMod(S) −→ 1

or
π1(Sg,n) −→ PMod(Sg,n+1) −→ PMod(Sg,n) −→ 1.

But where does this short exact sequence come from? Recall that by definition Mod(S) =
π0(Homeo+(S)) and S is connected. Hence we rewrite:

π1(S, x) −→ π0(Homeo+(S, x)) −→ π0(Homeo+(S)) −→ π0(S)

which is the beginning of the long exact sequence in homotopy groups of the fiber bundle

Homeo+(S, x)
F−→ Homeo+(S)

evx−→ S.

Then, a theorem from Hamstrom [HD58] states that if the euler characteristic is such that
χ(S) < 0 then the connected component of the identity in Homeo+(S) is contractible. Thus
π1(Homeo+(S)) = 1 and P is injective. Hence, if χ(Sg,n) < 0 we have:

1 −→ π1(Sg,n)
P−→ PMod(Sg,n+1)

F−→ PMod(Sg,n) −→ 1

3.1.2 Sketch of the proof

We move to the proof of Theorem 3.1. First consider the following theorem.

Theorem 3.5. For g ≥ 1, n ≥ 0, PMod(Sg,n) is generated by a finite collection of Dehn
twists along non-separating simple closed curves.

Remark 3.6. We will treat the case g = 0 later and we will see that Theorem 3.1 follows
directly from the theorem above.

Definition 3.7. Take S := Sg,n with g ≥ 1 and n ≥ 0. Let Ñ (Sg,n) be the one dimen-
sional simplicial complex whose vertices are the isotopy classes of non-separating simple closed
curves. Its edges correspond to the curves with geometric intersection number equal to one.

Figure 27

Figure 27 represents an edge in Ñ (Sg,n). We will need the two following lemmata to prove
Theorem 3.5.
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Lemma 3.8. Let g ≥ 1 and n ≥ 0, then Ñ (Sg,n) is connected.

Lemma 3.9. The stabilizer Γa of a a non-separating simple closed curve is contained in a
subgroup generated by a finite collection of Dehn twists along non-separating closed curves in
Sg,n.

We will prove thess two lemmata in the next section. We start with the proof of Theorem
3.5 and then use it to prove Theorem 3.1.

Figure 28

Figure 28 encapsulates the structure of the proof of Theorem 3.1.)

Proof of Theorem 3.1. Assume that Lemmata 3.8 and 3.9 are true. Take S := Sg,n with g ≥ 1
and n ≥ 0.

We start by studying the action of PMod(S) on the graph of Ñ (S). This action is
transitive on vertices. To see this, take α and β two non-separating simple closed curves
in S and consider the cut surfaces Sα and Sβ. By looking at a triangulation or a cellular
decomposition of these surfaces, we note that they have the same Euler characteristic (same
as S), the same number of boundary components (two more than S) and the same genus (genus
of S minus one). By the theorem of classification of surfaces, we obtain a self-homeomorphism
of S sending α to β. Similarly, we can show that the action is also transitive on edges. Then
the action is also transitive on directed edges. Indeed, one can find a homeomorphism that

flips the edge [α, β] by taking the element corresponding to

(
0 −1
1 0

)
in a neighbourhood of

α ∪ β (torus with one hole/puncture, can see this via triangulated surface). Here we use the
fact that Mod(S1,1) ∼= SL(2,Z) (similar proof that Example 3.4, see [FM12]).

Now fix an edge [α, β] in Ñ (S). Take any f ∈ PMod(S). By Lemma 3.8 one can find a
path (ai) in Ñ (S) between α and f(α).
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Figure 29

Figure 29 sums up the situation. Again by connectedness, there exists a family (fi) such
that fi(α) = ai for each i = 0, ..., k. Let H := ⟨Γα, Tβ⟩ where Γα is the stabilizer of α. We
show by induction on i that fi ∈ H. For i = 0, f0 is the identity which is in H. Then assume
fi ∈ H, we show that so is fi+1. Observe that f−1i sends [ai, fi+1(α)] to [α, f−1i fi+1(α)]. Since
PMod(S) is transitive on edges there exists ϕ ∈ PMod(S) such that ϕ sends [α, f−1i fi+1(α)]
to [α, β]. Thus ϕ ∈ Γα. Then we have:

ϕf−1i fi+1(α) = β ⇒ TβTαϕf
−1
i fi+1(α) = TβTα(β) = α

where the last equality follows from the fact that α and β intersect exactly once and from
Lemma 2.11. Using the induction hypothesis we obtain that fi+1 ∈ H. By induction, fk =
f ∈ H and H is all of PMod(S). We conclude the proof of the theorem by applying Lemma
3.9.

Now, we treat the case of PMod(S0,n). For n ≤ 3 we see in the Example 3.3 that the
mapping class group is trivial. The Birman short exact sequence says that:

1 −→ π1(S0,3) −→ PMod(S0,4) −→ PMod(S0,3) −→ 1

Since PMod(S0,3) is trivial and π1(S0,3) ∼= F2, the free group on two generators, we deduce
that PMod(S0,4) ∼= F2. The generators of π1(S0,3) are represented by non-separating simple
loops. They give generators for PMod(S0,4) which are Dehn twists along non-separating
simple loops (with geometric intersection number equal to two). Then, as above we have

1 −→ π1(S0,4) −→ PMod(S0,5) −→ PMod(S0,4) −→ 1

thus PMod(S0,5) ∼= F3 ⋊ F2. And this yields PMod(S0,n) for all n, inductively.
Finally, observe the following short exact sequence:

1 −→ PMod(Sg,n) −→ Mod(Sg,n) −→ Σn −→ 1

taking n = 1 we have PMod(Sg,1) ∼= Mod(Sg,1), the case n = 0 gives Theorem 3.1.

Remark 3.10. The theorem does not hold for multiple punctures, no composition of Dehn
twists can permute the punctures.

Remark 3.11. In fact we already observed the case of PMod(S0,n) in the proof of Property
1.13.

The next step is to determine explicitly the generators.

Theorem 3.12 (Lickorish, 1967). For g ≥ 1, the Dehn twists along isotopy classes of
a1, ...ag, b1, ..., bg, c1, ..., cg−1 (Figure 23) generate the mapping class group of Sg (ai’s in blue,
bi’s in green and ci’s in red).
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3.1.3 Toolbox for the proof

We give a sketch of the proof of the two lemmata we assumed to prove Theorem 3.5.

Sketch of proof of Lemma 3.8. For S1,n, we need to proceed directly by induction on n with
base case S1,1 and S1,0. We give an idea of the proof for g ≥ 2 and n ≥ 0.

First we study the graph X(S) whose vertices are the isotopy classes of essential simple
closed curves in S. The edges correspond to the curves that do not intersect or intersect exactly
once. This graph is connected. Indeed, take a and b two essential simple closed curves that
intersect many times. Next, replace a by a curve adjacent that intersects b fewer times than
a does (proof of Lemma 2.13).

Then, take a path (ai)i in X(S). Fix the end-points, by induction on n we show that the
interior of the path can be reduced consisting only in non-separating simple closed curves.
For the base case, let g ≥ 2 and n ≤ 1 and consider ai. If it is non-separating we are done. If
it is not, consider S − ai, which has two components S′ and S′′ with positive genus. If ai−1
and ai+1 lie in different components then they are disjoint, so we delete ai. Otherwise, they
both lie in S′ so we replace ai by the isotopy class of a non-separating curve in S′′. For the
induction step, we proceed as above. Note that if ai−1 and ai+1 lie in the same component
and the other component has genus 0 we can apply the induction hypothesis since we have
less punctures. The connectivity of Ñ (Sg,n) follows from the fact that given two disjoint
non-separating simple closed curves one can find an (essential) non-separating simple closed
curve that intersects each of them exactly once.

Sketch of proof of Lemma 3.9. Note that Γa = PMod(S, a). The idea is to proceed by double
induction on g and n. We start by the induction on g ≥ 1. The base case is for the S1,0, ..., S1,n,
in fact we show that if the lemma holds for Sg,n it also holds for Sg,n+1. Let’s start by
the inductive step, assume that the Lemma is true for Sg−1,n. We can generate Γa from
PMod(Sg,n−1) by adding Ta and en element that reverse the sides of a. This follows from the
two following short exact sequences (see Property 3.20 in [FM12]):

1 −→ PMod(Sg,n,
−→a ) −→ PMod(Sg,n, a) −→ Z/2Z −→ 1 (⋆)

and

1 −→< Ta >−→ PMod(Sg,n,
−→a ) −→ PMod(Sg,n − a) −→ 1

where PMod(Sg,n,
−→a ) are the elements of PMod(Sg,n, a) that preserve the orientation of a

and Sg,n − a is a surface Sg−1,n+2. We conclude using the induction hypothesis and the base
case. Now, we show the base case. Assume that the lemma holds for Sg,n and consider the
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following diagram:

1 1

1 π1(Sg,n − a) PMod(Sg,n+1 − a) PMod(Sg,n − a) 1

1 ker(ρ) PMod(Sg,n+1,
−→a ) PMod(Sg,n,

−→a ) 1

< Ta > < Ta >

1 1

ρ

By a diagram chase, ρ is surjective. The first horizontal short exact sequence is given by
the Birman sequence. By the induction hypothesis, PMod(Sg,n,

−→a ) is finitely generated by a
finite collection of Dehn twists along non-separating closed curves. Hence so is PMod(Sg,n −
a) by surjectivity of the second vertical map in the square. We know that π1(Sg,n − a is
also finitely generated by non-separating simple loops. Thus, PMod(Sg,n+1 − a) is finitely
generated by a finite collection of Dehn twists along non-separating closed curves (given by
the lifts of the generators of PMod(Sg,n−a) and the images of the generators of π1(Sg,n−a).
So PMod(Sg,n+1,

−→a ) is finitely generated by a finite collection of Dehn twists along non-
separating closed curves and so is PMod(Sg,n+1, a) by the short exact sequence (⋆).

3.2 The mapping class group is finitely presented

We have found that the mapping class group of a surface is finitely generated. Now, what
about relations? Information about the relations of a group G is encapsulated in the first and
second homology groups of G, which are the homology groups of any K(G, 1). Indeed, the
first homology group of a group G is the abelianization of G. The link between the second
homology group and the relations of the group is given by the Hopf formula but we will not
see it here. In this section, we start by listing some important relations that appear in the
mapping class group of a surface. Then, we compute the first homology group of the mapping
class group of Sg,n to study its abelianization. Finally, we show that the mapping class group
of Sg,n is finitely presented, this is equivalent to show that K(G, 1) has a finite 2-skeleton.
Along the way, we will meet an interesting construction, the arc complex, a close cousin to
the complex of curves at which we will look at closely in the next section.

Remark 3.13. Recall that for X a topological space, H1(X,Z) ∼= (π1(X))ab. Hence for a
group G, H1(G,Z) := H1(K(G, 1),Z) ∼= (π1(K(G, 1)))ab ∼= (π1(G))ab.

3.2.1 Relations

Here we point out some interesting relations.

Example 3.14 (Disjointness relation). Let a, b be isotopy classes of simple closed curves in
a surface S such that i(a, b) = 0, then we have

TaTb = TbTa.
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△

Example 3.15 (Braid relations). Let a, b be isotopy classes of simple closed curves such that
i(a, b) = 1. Then,

TaTbTa = TbTaTb.

Indeed, this relation is equivalent to (TaTb)Ta(TaTb)
−1 = Tb. By observing that for ϕ ∈

Mod(S), ϕTaϕ
−1 = Tϕ(a) we deduce that this is equivalent to TTaTb(a) = Tb. Since Tc = Td

if and only if c = d, we conclude by considering Figure 10 which tells us that TaTb(a) = b,
where a is the yellow/green curve and b is the red one. △

Example 3.16 (k-chain relation). Let k ≥ 0 and c1, ...ck a sequence of simple closed curves
in a surface S such that i(ci, ci+1) = 1 for all i and i(ci, cj = 1 for all non consecutive i and
j. Let V be a closed regular neighbourhood of c1 ∪ ... ∪ ck. Then we have:

• For k even, (Tc1 ...Tck)
2k+2 = Tδ where δ := ∂V .

• For k odd, (Tc1 ...Tck)
k+1 = Tδ1Tδ2 where δ1 ∪ δ2 := ∂V

For instance, let S be a surface and a, b be two non separating simple closed curves in S that
intersect exactly once. A neighbourhood of a ∪ b is a torus with one hole. We have already
seen that one can identify the mapping class group of a one-holed torus with SL(2,Z). We

send Ta and Tb to the generators of SL(2,Z),
(
0 −1
1 0

)
and

(
1 1
1 0

)
. Then, one can see that

TaTb has order 6, hence TaTb = Td where d is the boundary of the regular neighbourhood of
a ∪ b. △

Example 3.17 (Lantern relation). Let x, y, z, be simple closed curves in a surface S with
boundary components a, b, c, d. See Figure 30. Then, we have the relation:

Figure 30

TxTyTz = TaTbTcTd.

△

Example 3.18 (Hyperelliptic relation). Let k ≥ 0 and c1, ...c2g+1 a sequence of simple closed
curves in a surface Sg such that i(ci, ci+1) = 1 for all i and i(ci, cj = 1 for all non consecutive
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i and j. Let V be a closed regular neighbourhood of c1 ∪ ...∪ ck. Then, we have the following
relations

(Tc2g+1 ...Tc1Tc1 ...Tc2g+1)
2 = 1

[Tc2g+1 ...Tc1Tc1 ...Tc2g+1 , Tc2g+1 ] = 1.

△

Theorem 3.19. For g ≥ 3, the group H1(Mod(Sg),Z) is trivial.

Proof. Let Sg be a surface with genus g ≥ 3. Observe that the Dehn twists along non separat-
ing simple closed curves are all conjugates to each other since for ϕ ∈ Mod(S), ϕTaϕ

−1 = Tϕ(a).
Hence,

Ψ : Mod(S) −→ H1(Mod(S),Z) ∼= Mod(S)ab

maps the generators of Mod(S) to the same element in H1(Mod(S),Z) since Mod(S) is gen-
erated by Dehn twists. So H1(Mod(S),Z) is generated by an element h. We show that h is
trivial. Since g ≥ 3 one can embed into S a surface S4

0 with genus 0 and boundary components
a, b, c, d which are different and essential. See Figure 31. Let x, y, z, be simple closed curves

Figure 31

in the embedded surface. By looking at the image of the lantern relation under Ψ we obtain
h4 = h3 so h is trivial.

McCool gave in 1975 a first algebraic proof for the existence of a finite presentation for
the mapping class group of higher genus surfaces. Then in 1980, Hatcher and Thurston gave
an algorithm expliciting a finite presentation. Finally, in 1983 (and corrected in 1984 with
Birman) Wajnryb described explicitly a presentation known as the standard presentation:〈

Humphries generators

∣∣∣∣ Disjointess, Braid, 3-chain
Lantern, ( and Hyperelliptic if S is closed)

〉
for surfaces with genus g ≥ 3. Later Gervais gave another presentation using the star

relation, which further simplified the presentation. For g = 0, the presentation is the same
as the presentation of the braid group. For g = 1 and at most one puncture, we already
identified the mapping class group with SL(2,Z). For g = 1 and more than one puncture we
need to work a little more with the lantern relation, see Theorem 5.1 in [Kor03]. For g = 2,
we don’t have all the tools (in particular the Birman-Hilden theorem), a presentation is given
in Section 5.1 and in Chapter 9 in [FM12].
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3.2.2 Proof of finite presentability

The strategy, pointed out by Andrew Putman and also presented in [FM12], is to prove that
the arc complex is contractible and to build a K(Mod(S), 1) with finite 2-skeleton by using
the action of Mod(S) on the arc complex.

Let S be a surface with non empty boundary or with at least one marked point.

Definition 3.20. A flag complex is an abstract simplicial complex where k+1 vertices span
a k-simplex if and only if they are pairwise connected by edges.

Definition 3.21. A proper arc in S is a curve α : [0, 1] −→ S such that its endpoints are
in the set of marked points or in the boundary of S. A closed curve is essential if it is not
homotopic to a point, a puncture, or a boundary component.

Definition 3.22. The arc complex of S, denoted A(S) is the flag complex whose vertices are
isotopy classes of simple essential proper arcs. The edges of the arc complex correspond to
vertices that admits disjoint representatives.

Proposition 3.23. A(S) is contractible

Sketch of proof. Take a vertex v ∈ A(S). The simplicial star of v is the contractible space
given by the union of closed simplices containing v. The strategy is to construct a deformation
retract of A(S) onto the simplicial star of v. Since simplicial stars are contractible, the result
will follow.

Let p be an arbitrary point in the simplex spanned by v1, ..., vk ∈ A(S). We write p =
Σcivi, where Σci = 1 and ci > 0. Let vi and v be the representatives in S of the vertices vi
and v in A(S). We can realize p by thickening each vi in S to a band with width ci. Hence,
the widened vi intersect v in i(v, vi) intervals of width ci. Via an isotopy one can slightly
modify all the vi’s to glue these intervals into one interval with width θ := Σcii(v, vi). We
define the flow as follows, at time t, we push a part of width tθ of the big band around v
towards a chosen direction along v.

Figure 32: Example of the construction of the flow with two curves
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Figure 33: Example of the construction of the flow with three curves

See Figures 32 and 33. This is continuous and well-defined. The point p is slightly pushed
in the direction of the star complex. The part of the band that is sent along v are disjoint
from v and the vi’s. In this way, p has new coordinates in terms of representatives of these
new disjoint arcs. The point p lies in the new simplex in A(S) created by adding the edges
corresponding to these new arcs. Finally, at time t = 1, all the arcs in the band are disjoint
and p lies in the simplicial star of v. For more details see [Hat91].

Proposition 3.24. Let Γ be a group acting cellularly on a contractible CW complex X without
rotation. If

• X/Γ is finite,

• each vertex stabilizer is finitely presented,

• each edge stabilizer is finitely generated.

Then, Γ is finitely presented.
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Proof. Presented in class.

Theorem 3.25. Let S be a compact surface with finitely many marked point. Then Mod(S)
is finitely presented.

Proof. Presented in class.
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4 The Complex of curves

The mapping class group of a surface is not hyperbolic but it admits an action on the curve
complex, which is a hyperbolic space. The latter is close to the arc complex A(S) that we have
seen in the proof of finite presentability. Such an action allows us to find nice results about
the geometry of the mapping class group. See the series of papers from Ursula Hamenstaedt
to go further. Here we give a sketch of the proof that the curve complex is a hyperbolic space
by following [HPW13]. The details of the proof were presented in class.

The curve complex, denoted C(S), is the complex whose underlying graph has essential
simple closed curves as vertices and whose edges correspond to pairs of disjoint curves. The
arc and curve complex, denoted AC(S), is a combination of the arc complex and the curve
complex.

First, we prove that the arc complex is 7-hyperbolic. A geodesic space Γ is k-hyperbolic
if, for every geodesic triangle, there is a vertex at distance ≤ k from each of the three sides.

The main tool in the proof is the notion of unicorn path. Consider the arc complex. To get
a unicorn path you need two arcs in minimal position a and b. Give a direction and endpoints
to these arcs. Travel along a until you meet an intersection point with b. Then, follow b from
this intersection point to the starting point of b. Note that you don’t necessarily obtain an
arc (you might have self-intersections) but if you get one then it is called a unicorn arc. You
can order unicorn arcs between two arcs to get a unicorn path. The family of unicorn paths
have nice properties allowing us to prove the hyperbolicity of the arc complex.

Finally, one constructs a 2-Lipschitz retraction from AC(S) to C(S). Hence, we can observe
that a geodesic in the curve complex is a 2-quasigeodesic in the arc complex. This means
that one can control the distance in C(S) with the distance from AC(S). Thus, to obtain
17-hyperbolicity of the curve complex one can view a geodesic triangle from C(S) in AC(S).
Then, approximating this triangle with an ”arc-geodesic” triangle and using 7-hyperbolicity
of A(S) with the previous retraction, you get 17-hyperbolicity of C(S).
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