Subgroups of elliptic elements of the plane Cremona group
CHRISTIAN URECH

The main source for the content of this abstract are the two papers [7] and [8]. The
Cremona group Cra(C) is the group of birational transformation of the complex
projective plane. One of the key techniques for studying the group theoretical
properties of infinite subgroups of the complex plane Cremona group Cry(C) has
been an action by isometries on an infinite dimensional hyperboloid H> (P?) (see
[3] for an overview and references). Recall that there are three types of isometries
of hyperbolic spaces:

e clliptic isometries, which are the isometries that fix a point in H (P?),

e parabolic isometries, which are the isometries that do not fix any point in
H>(P?), but fix exactly one point in the boundary 9 H> (P?),

e lozodromic isometries, which are the isometries that do not fix any point
in H>(P?), but fix exactly two points in 9 H> (P?).

We call an element f € Cro(C) elliptic, parabolic or lozodromic, if the isometry of
H>° (IP’Q) induced by f is elliptic, parabolic or loxodromic respectively. This notion
is linked to the dynamical behavior of f.

We consider subgroups of Cry(C) consisting only of elliptic elements. The main
result is that the group theoretical structure of these subgroups is not more com-
plicated than the structure of algebraic subgroups of Cry(C):

Theorem 0.1 ([8]). Let G C Cry(C) be a subgroup of elliptic elements. Then one
of the following is true:

(1) G is contained in an algebraic subgroup;
(2) G preserves a rational fibration;
(3) G is a torsion subgroup.

Theorem 0.2 ([8]). Let G C Cra(C) be a torsion subgroup. Then G is isomorphic
to a bounded subgroup of Cra(C).

In combination with the classification of maximal algebraic subgroups (see [1]),
Theorem 0.1 and Theorem 0.2 give an explicit description of groups of elliptic
elements. This allows to give new descriptions of arbitrary subgroups of Crz(C).

Theorem 0.1 and Theorem 0.2 can now be used to prove structure theorems on
general subgroups of Cra(C). Given a subgroup G of Cry(C) one can consider the
following three cases:

(1) G contains a loxodromic element;
(2) G contains no loxodromic element but a parabolic element;
(3) G is a subgroup of elliptic elements.

In case (1), the group G can be understood by using tools from hyperbolic geometry
and geometric group theory, in case (2) it is known that G preserves a rational
or elliptic fibration and case (3) can be treated with the help of Theorem 0.1 and
Theorem 0.2. Let us explain two results that can be proved with this strategy.
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1. THE TITS ALTERNATIVE
Recall the following definition:

Definition 1.1.
(1) A group G satisfies the Tits alternative if every subgroup of G is either
virtually solvable or contains a non-abelian free subgroup.
(2) A group G satisfies the Tits alternative for finitely generated subgroups if
every finitely generated subgroup of G either is virtually solvable or con-
tains a non-abelian free subgroup.

Cantat established the Tits alternative for finitely generated subgroups of Cra(C)
([2]). Theorem 0.1 and Theorem 0.2 yield the results needed to generalize this re-
sult:

Theorem 1.1 ([8]). The plane Cremona group Cra(C) satisfies the Tits alterna-
tive.

2. SIMPLE SUBGROUPS OF THE PLANE CREMONA GROUP

It had been a long-standing open question, whether the plane Cremona group
is simple as a group until Cantat and Lamy showed in 2012 that it is not ([4]).
The main idea to prove this result was to use techniques from small cancellation
theory, an approach that has been refined by Shepherd-Barron and Lonjou (see
[6], [5]). These results are a starting point for the following classification of all
simple subgroups of the plane Cremona group:

Theorem 2.1 ([7]). Let G C Cra(C) be a simple group. Then:

(1) G does not contain lozodromic elements.

(2) If G contains a parabolic element, then G is conjugate to a subgroup of J.

(3) If all elements in G are elliptic, then either G is a simple subgroup of an
algebraic subgroup of Cro(C), or G is conjugate to a subgroup of J.

With the help of Theorem 2.1 all simple groups that act non-trivially by bira-
tional transformations on compact complex Kéhler surfaces can be described:

Theorem 2.2 ([7]). Let G be a simple group. Then

(1) G acts non-trivially by birational transformations on a rational complex
projective surface if and only if G is isomorphic to a subgroup of PGL3(C).

(2) G acts non-trivially by birational transformations on a non-rational com-
pact complex Kdhler surface of negative Kodaira dimension if and only if
G is finite or isomorphic to a subgroup of PGLy(C).

(3) G acts non-trivially by birational transformations on a compact complex
Kahler surface S of non-negative Kodaira dimension if and only if G is
finite.
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